Stekolshchik, R. (Autor)

Notes on Coxeter Transformations and the McKay Correspondence

Verfügbare Version:

sofort lieferbar

  96,29 €
inkl. MwSt., ggf. zzgl. Versand

Beschreibung

One of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram.
The Coxeter transformation is the main tool in the proof of the McKay correspondence, and is closely interrelated with the Cartan matrix and Poincare series. The Coxeter functors constructed by Bernstein, Gelfand and Ponomarev plays a distinguished role in the representation theory of quivers.
On these pages, the ideas and formulas due to J. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, H.S.M. Coxeter, V. Dlab and C.M. Ringel, V. Kac, J. McKay, T.A. Springer, B. Kostant, P. Slodowy, R. Steinberg, W. Ebeling and several other authors, as well as the author and his colleagues from Subbotin's seminar, are presented in detail. Several proofs seem to be new.

Produktdetails

ISBN/GTIN 978-3-540-77399-3
Seitenzahl 240 S.
Kopierschutz mit Wasserzeichen
Dateigröße 2583 Kbytes

Produktsicherheit



Wird geladen …